Biochemical, Virulence and Resistance Features in Bacterial Strains Recovered from Hospital Surfaces after Decontamination with Quaternary Ammonium Compounds, Triclosan and Iodine Desinfectatnts

MIHAELA MAGDALENA MITACHE^{1,2*}, IRINA GHEORGHE³, GEORGETA TOTEA⁴, CORALIA BLEOTU⁵, CARMEN CURUTIU³, DANIEL COCHIOR¹, ELENA RUSU¹, MARIANA CARMEN CHIFIRIUC^{3,6}

¹University Titu Maiorescu of Bucharest, Faculty of Medicine, 67A Gheorghe Petrascu Str., 031593, Bucharest, Romania

² Public Health Direction Bucharest, 72-74 Avrig Str., 021576, Bucharest, Romania

³ University of Bucharest, Faculty of Biology, Department of Microbiology, 91-95 Splaiul Independentei, 050095,Bucharest, Romania

³⁴ Dr.Maria Burghele Hospital Buftea, 5 Studio Str., 070000, Buftea, Romania

⁵ Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Road, 030304, Bucharest, Romania, Bucharest

⁶ Research Institute of the University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania

The purpose of this study was to investigate the resistance and virulence markers in microbial strains isolated from the hospital environment, recovered after surfaces decontamination with quaternary ammonium compounds, triclosan, iodine disinfectants, in order to predict their role in healthcare-associated infections. The resistance phenotypes were established using disk diffusion and double-disk diffusion test. Simplex and multiplex PCR assays were used to identify the genetic support of cell-associated and soluble virulence factors The Gram-negative bacterial strains isolated from hospital surfaces after decontamination were resistant in high proportions to beta-lactam antibiotics, including penicillins and associations with beta-lactamase inhibitors, third and fourth generation cephalosporins and carbapenems (encoded by bla_{TEMP} bla_{NDMIIke} bla_{CTX-MIIke}, bla_{OXA-48Ijke} genes), quinolones (QnrA, gyrB, parE genes), aminoglycosides (aac3Ia gene), and tetracyclines. Kegarding the virulence profiles, P. aeruginosa strains revealed the plcH gene (86.6%) followed by plcH, ExoS, algD and ExoU, while the Enterobacteriaceae strains, fimH (24%), followed by papC, sfaDE, hlyA, cnf1, eaea and VT2 genes. S. aureus isolates revealed the SCCmec cassette of type II (40%), followed by type V, IIIA and type IV (2B) and the clfA, clfB, and can adhesion genes. These findings demonstrate that incorrect practices in biocides use, regarding contact time and concentrations or instruments and surfaces insufficient cleaning before disinfection can decrease their effect and favor the persistence of resistant and virulent microbial strains in the hospital environment. The multiple drug resistance and virulence determinants, encoded by diverse genetic elements suggest the potential of these strains to persist and initiate hospital-associated infections.

Keywords: resistance, virulence, biocides

The continuously and increasingly emergence and spread of microbial resistance worldwide has led to the introduction of disinfection procedures based on widespread used biocides in hospital (instruments, various devices, surfaces and air) and food industry. However, despite their broad action, with multiple unspecific target sites at the level of microbial cell (e.g., cytoplasmic membrane, nucleic acids, fatty acids, proteins, enzymes), the efficacy of biocides can be affected by intrinsic factors, like: enzymatic degradation, permeability barrier, biocide concentration, contact time but also by acquired resistance mechanisms [1-3]. The bacterial cells grown in biofilms were found to be 150 to 3000 times more resistant to disinfectants, mainly due to poor penetration of the biofilm polysaccharide matrix [4, 5]. Although it has been demonstrated that the mutation is a rare mechanism for resistance acquisition to biocides, this was documented for triclosan (FAB I) [6-8] and quaternary ammonium compounds (qacG) resistance [9-11].

Experimental part

Bacterial strains and virulence analysis A total number of 60 bacterial strains belonging to Escherichia coli (n=10), Klebsiella pneumoniae (n=15), *Pseudomonas aeruginosa* (n=15) and *Staphylococcus aureus* (20) were recovered in 2016 from hospital surfaces after decontamination with quaternary ammonium compounds, triclosan and iodine disinfectants in Public Health Diagnostic and Research Laboratory.

The strains identification was performed with traditional biochemical tests and the automated miniApi system [12, 13]. The antibiotic susceptibility testing was performed using the disk diffusion method (Kirby-Bauer), following the CLSI recommendations (2015 and 2016 editions).

Molecular analysis

The genetic support of the resistance (carbapenemases, ESBLs, aminoglycosides and quinolones) and virulence in Gram-negative rods (table 1) was investigated by simplex and multiplex PCR, using a reaction mix of 20μ L (PCR Master Mix 2x, Thermo Scientific) containing 1μ L of bacterial DNA extracted using the alkaline extraction method (table 2). In this purpose, 1-5 colonies of bacterial cultures were suspended in 1.5 mL tubes containing 20μ L solution of NaOH (sodium hydroxide) and SDS (sodium dodecyl sulphate). The amplification program was runned on a *PCR thermal Corbett* machine. The genotypic

^{*} email: magda.mitache@yahoo.com

Table 1 PRIMERS SEQUENCES USED IN SIMPLEX AND MULTIPLEX PCR ASSAYS FOR CARBAPENEM, QUINOLONE AND AMINOGLYCOSIDES RESISTANCE GENES AND VIRULENCE GENES IN ANALYZED ENTEROBACTERIACEAE AND P. AERUGINOSA STRAINS

The gene Primer		Nucleotide sequence	Amplicon size	Refer- ences	
blaox4-48	OXA-F	5'GCGTGGTTAAGGATGAACAC 3'	438		
DIGOXA-48	OXA-R	5'CATCAAGTTCAACCCAACCG 3'	430	F1 71	
	IMP-F	5'GGAATAGAGTGGCTTAA(C/T)TCT C 3'	222	[17]	
bla _{IM} p	IMP-R	5'GGTTTAA(C/T)AAAACAACCACC 3'	232		
	VIM-F	5'GATGGTGTTTGGTCGCATA 3'	200	1	
blavıм	VIM-R	5'CGAATGCGCAGCACCAG 3'	390		
	NDM-F	5'GGTTTGGCGATCTGGTTTTC 3'		1	
blandM	NDM-R	5'CGGAATGGCTCATCACGATC 3'	621		
blaper	PER-F	5'-AATTTGGGCTTAGGGCAGAA-3'			
o red far	PER-R	5'-ATGAATGTCATTATAAAAGC-3'	925	[18]	
	TEM-F	5'-ATGAGTTTTCAACATTTTCG-3'			
blatem	TEM-R	5'-TTACCAATGCTTAATCAG TG-3'	861	[19]	
blashv	SHV-F	5'-GCCCTCACTCAAGGATGTAT-3'	888	[20]	
	SHV-R	5'-TTAGCGTTGCCAGTGCTCGA-3'			
L1	CTX-M-F	5'-CGCTGTTGTTAGGAAGTGTG-3'	700	1247	
blactx-м	CTX-M-R	5'-GGCTGGGTGAAGTAAGTGAC-3'	730	[21]	
QnrA	QnrAm-F	5'-AGA GGA TTT CTC ACG CCA GG-3'	580		
2	QnrAm-R	5'-TGC CAG GCA CAG ATC TTG AC-3'			
		5'-GGM ATH GAA ATT CGC CAC TG-3'			
0	QnrBm-F	[M = A or C, H = A or C or T]	264	[[22]	
QnrB	QnrBm-R	5'-TTT GCY GYY CGC CAG TCG AA-3'	204	[22]	
	-	[Y = C or T]			
	QnrSm-F	5'-TCT AAA CCG TCG AGT TCG GCG-3'		1	
QnrS	QnrS-R	5'-GCGCGAGATGACCCGCCGCA-3'	820		
	GyrB-F	5'-GCGCGAGATGACCCGCCGCA-3'			
GyrB	GyrB-R	5'-CTGGCGGAAGAAGAAGAAGGTCAACA-3'	465	[18]	
· ·					
ParE	ParE-F	5'CGGCGTTCGTCTCGGGCGTGGTGAAGG3' 670			
	ParE-R	5'TCGAGGGCGTAGTAGATGTCCTTGCCGA3'			
HlyA	HlyA-F			[25]	
	HlyA-R	5'-AACAAGGATAAGCACTGT TCTGGC T-3'	1,177 bp		
		5'-ACCATATAAGCGGTCATT CCC GTC A-3'			
sfaD/E	sfaD/E-F	5'-CGGAGGAGTAATTACAAACCTGGCA -3'	408 bp		
	sfaD/E-R	5'- CTCCGGAGAACTGGGTG ATCTTA C-3'	_		
PapC	PapC-F	5'-GACGGCTGTACTGCAGGGTGTGGC-3'	328 bp		
4 -	PapC-R	5'-ATATCCTTTCTGCAGGGATGCAATA-3'			
FimH	FimH-F	5'-TGC AGA ACG GAT AAG CCG TGG -3'	508 bp	[26]	
	FimH-R	5'- GCA GTC ACC TGC CCT CCG GTA -3'	200.04	[20]	
cnfl	cnf1-F	5'- GAA CTT ATT AAG GAT AGT-3'	543kb	[27]	
<i>cny1</i>			545K0	[27]	
	cnfl-R	5'-CAT TAT TTA TAA CGC TG-3'			
eaea	Eaea-F	5'- GGCTCAATTTGCTGAGACCACGGTT-3'	494 bp		
	Eaea-R	5'- GCAAATTTAGGTGCGGGTCAGCGTT-3'	121.04		
bfpA	BfpA-F	5'- CAATGGTGCTTGCGCTTGCT-3'	324bp		
	BfpA-R	5'- GCCGCTTTATCCAACCTGGT-3'	5240p		
Eaf	Eaf-F	5'- CAGGGTAAAAGAAAGATGATAA-3'	207	1	
-	Eaf-R	5'- TATGGGGACCATGTAATTATCA-3'	397bp		
AggR	AggR-F	5'- CGATGTATACACAAAAGAAGGA -3'		[28]	
1166M	AggR-R	5'- GCCTAATGAAATATGATGGTACT-3'	640bp		
EAggE		5'- CTGGCGAAAGACTGTATCAT-3'		{	
	EAggE-F		630bp		
1/71	EAggE-R	5'-CAATGTATAGAAATCCGCTGTT-3'		4	
VTI	VT1-F	5'-GAAGAGTCCGTGGGATTACG-3'	130bp		
	VT1-R	5'- AGCGATGCAGCAGCTATTAATAA-3'	13000		
VT2	VT2-F	5'- AAGAAGATGTTTATGGCGGT-3'	2465-		
	VT2-F	5'- CACGAATCAGGTTATGCCTC-3'	346bp	1	

Protease IV	TCF 5'-TATTTCGCCGACTCCCTGTA-3'		134	[16]
	TCR	5'-GAATAGACGCCGCTGAAATC-3		
algD	algD-F	5'-ATGCGAATCAGCATCTTTGGT-3'	1310	
ш _Б Д	algD-R	5'-CTACCAGCAGATGCCCTCGGC-3'		
m la U	plcH-F	5'-GAAGCCATGGGCTACTTCAA-3'	307	
plcH	plcH-R	5'-AGAGTGACGAGGAGCGGTAG-3'		
plcN	plcN-F	5'-GTTATCGCAACCAGCCCTAC-3'	466	
	plcN-R	5'-AGGTCGAACACCTGGAACAC-3'		
exo U	exoU-F	5'- CCGTTGTGGTGCCGTTGAAG-3'	134	
	exoU-R	5'- CCAGATGTTCACCGACTC G-3'		
ExoT	exoT-F	5'-AATCGCCGTCCAACTGCATGCG-3'	152	
	exoT-R	5'- TGTTCGCCGAGGTACTGCTC-3'		
ExoA	Eta1B	5'-AACCAGCTCAGCCACATGTC -3'	207	
	Eta2	5'-CGCTGGCCCATTCGCTCCAGCGCT-3'		
	ExoSf2	5'-ATC GCTTCAGCAGAGTCCGTC-3'	1352	
ExoS	ExoSr2	5'-CAGGCCAGATCAAGGCCGCGC-3'		
	CIF2 F2	5'-TTC GAG TTG CTG ATG AAG AAG G-3'	495	[14]
CIF2	CIF2 R2	5'-ATT TAC CAC AAG GAC TAC CAG C-3'		1
	RIF5 F10	5'-TTC TTA AGT ACA CGC TGA ATC G-3'	414	
RIF5	RIF5 R13	5'-GTC ACA GTA ATT CCA TCA ATG C-3'		
	cerB2 F2	5'-AGT TTC TCA GAA TTC GAA CG-3'	311	
ccrB2	ccrB2 R2	5'-CCG ATA TAG AAW GGG TTA GC-3'	1 311	
	mecI P2	5'-ATC AAG ACT TGC ATT CAG GC-3'	209	
mecI	mecI P3	5'-GCG GTT TCA ATT CAC TTG TC-3'	209	
	mecA P4	5'-TCC AGA TTA CAA CTT CAC CAG G-3'	162	
mecA	mecA P4 mecA P7	5'-CCA CTT CAT ATC TTG TAA CG-3'	102	
	SCCmecV J1 F	5'-TTC TCC ATT CTT GTT CAT CC-3'	377	
SCCmecVJ1	SCCmecV J1 F SCCmecV J1 R	5'-AGA GAC TAC TGA CTT AAG TGG-3'	3//	
	dcs F2	5'-CAT CCT ATG ATA GCT TGG TC-3'	342	
Dcs	dcs F2 dcs R1	5'-CTA AAT CAT AGC CAT GAC CG-3'	542	
		5'-AAT CAT CTG CCA TTG GTG ATG C-3'	284	
Kdp	kdp F1 kdp R1	5'-CGA ATG AAG TGA AAG AAA GTG G-3'	204	
-	-		242	
	SCC mec III J1 F	5'-CAT TTG TGA AAC ACA GTA CG-3'	243	
SCCmecIIIJ1	-	5'-GTT ATT GAG ACT CCT AAA GC-3'		
	SCCmec III J1			
	R			
TypeI	Type I-F	5'-GCT TTA AAG AGT GTC GTT ACA GG-3'	613	[15]
-71	Type I-R	5'-GTT CTC TCA TAG TAT GAC GTC C-3'		
TypeII	Type II-F	5'-CGT TGA AGA TGA TGA AGC G-3'	398	
-71	Type II-R	5'-CGA AAT CAA TGG TTA ATG GAC C-3'		
TypeIII	Type III-F	5'-CCA TAT TGT GTA CGA TGC G-3'	280	
Typein	Type III-R	5'-CCT TAG TTG TCG TAA CAG ATC G-3'		
TypeIVa	Type IVa-F	5'-GCC TTA TTC GAA GAA ACC G-3'	776	
турына	Type IVa-R	5'-CTA CTC TTC TGA AAA GCG TCG-3'		
TypeIVb	Type IVb-F	5'-TCT GGA ATT ACT TCA GCT GC-3'	493	
1yperv o	Type IVb-R	5'-AAA CAA TAT TGC TCT CCC TC-3'		
TypeIVc	Type IVc1-F	5'-TCT ATT CAA TCG TTC TCG TAT T-3'	200	
	Type IVc1-R	5'-TCG TTG TCA TTT AAT TCT GAA CT-3'		
TypeIVd	Type IVd1-F	5'-AAT TCA CCC GTA CCT GAG AA-3'	881	
	Type IVd1-R	5'-AGA ATG TGG TTA TAA GAT AGC TA-3'		
TypeV	Type V-F	5'-GAA CAT TGT TAC TTA AAT GAG CG-3'	325	
	Type V-R	5'-TGA AAG TTG TAC CCT TGA CAC C-3'		
Iypev	1 1 1 1 1 1 1 1			1
ccrC	ccrC-F	5'-CGT CTA TTA CAA GAT GTT AAG GAT AAT-3'	495	

Table 2 THE COMPOSITION OF THE REACTION MIX											
The gene	Concentration										
_	primer	MgCl ₂	Dntp	DNA Taq-pol	Reaction buffer	DNA	volume				
blavım, blaıme, blatem blactx-m, blanınm	0.5µM	1.2mM	2μΜ	0.2Uµ1	1x	10x	20µL				

characterization of the SCCmec cassette types in *S.aureus* strains was performed using simplex and multiplex PCR. Two reactions were performed using the multiplex PCR with five and four pairs of specific primers respectively for the various sequences of the SCCmec cassette. Their classification and parameters used to conduct the reactions followed the protocol developed by Miheirico et al. [14] and Zhang et al. [15]. The detection of the specific virulence genes was performed by three simplex PCR and three multiplex PCR assays according with previous published protocols [16].

Results and discussions

P. aeruginosa strains isolated from hospital surfaces after decontamination were resistant in high proportions to ticarcillin (53.33%), third and fourth generation cephalosporins (ceftazidime=53.33% and cefepime= 46.66%), ciprofloxacin (33.33%), gentamicin (26.66%), carbapenems (imipenem and meropenem) (20%), piperacillin (20%), piperacillin+tazobactam (13.33%).

Regarding the antibiotic resistance genes our study revealed that 20% of the analyzed strains resistant to meropenem and imipenem produced imipenemase and 26.6% of the analyzed strains revealed the presence of blaTEM gene. No quinolone resistance genes were found in the investigated strains and only one isolate revealed the aac3Ia gene which confers aminoglycoside resistance. Concerning the virulence profiles of *P. aeruginosa* strains, the molecular analysis through PCR arrays showed that all the analyzed strains revealed the plcH gene, in 86.6% of the strains were found plcH, ExoS and AlgD genes and only 33.3% of *P. aeruginosa* harbored the *ExoU* gene. In *P. aeruginosa* strains, the plcH gene encodes for a phospholipase that promotes the degradation of the erythrocyte membrane, exposing the inner layer to PlcN that could then hydrolyze the phospatidylserine residues present on this level.

In 2016 Porumbel et al., revealed the presence of the both PlcH and PlcN genes in 27 MDR nosocomial strains isolated from hospitalized patients with primary cardiovascular diseases, The presence of algD gene encoding for alginate production in the majority of tested strains demonstrates their possible involvement in infections with biofilm formation [29]; 18% of the analyzed strains expressed the ExoS gene - an anti-phagocytic factor which could affect eukaryotic cell cytoskeletal structure [30] and less frequently, the ExoU gene a highly virulence marker in *P. aeruginosa* isolates from hospitalacquired pneumonia [31].

The *E. coli* and *Klebsiella pneumoniae* strains exhibited â-lactam [60% of the isolates were resistant to cefepime; 56% to piperacillin-tazobactam; 52% to ceftazidime; 40% to carbapenems (imipenem and meropenem) and 32% to amoxicillin-clavulanic acid and piperacillin]; aminoglycosides (52% of the strains were resistant to amikacin and 48% to gentamicin and tobramycin); quinolones (48% were resistant to ciprofloxacin); tetracyclines (56%) resistance. The results of PCR analysis for carbapenemases and ESBLs genes revealed the presence of bla_{NDMike} gene (28% of *K. pneumoniae* isolates and 20% of *E. coli* strains); $bla_{CTX-Milke}$ gene in 28% of *E.coli* and 24% of *K. pneumoniae* isolates and $bla_{OXA-48like}$ gene only in 4% of the *K. pneumoniae* strains. The genetic findings suggest the possible nosocomial origin of the respective strains. The carbapenemases and ESBLs genes may reside within the same plasmids and, therefore, be spread together. Quinolone resistance was revealed by QnrA gene (16% of *É.coli* and 4% of *K. pneumoniae);* gyr**Å** gene (25% of *E.coli* and 16% of *K. pneumoniae*); and parE gene (25% of *E. coli* isolates).

virulence genes Regarding the the of Enterobacteriaceae strains, our results have revealed the presence of fimH gene in the case of 24% of the investigated strains; papC and sfaDE (20%); hlyA and cnf1 genes (12%); eaea and VT2 genes (4%). The FimH gene encodes for type I fimbriae which are involved in the colonization of urinary tract, which may suggest a crucial role of this virulence gene in infections caused by *E. coli* [32]. Similar results were obtained. The study performed by Chelariu et al., in 2016 on 133 strains isolated from stool samples in patients with metabolic syndrome admitted in Cardiology and Internal Medicine Units of Hospital Prof. Ctin Angelescu also revealed the fimH as the most frequent virulence marker. The sfaDE gene represents an important adhesin of uropathogenic *E. coli* strains causing urinary tract infections in humans [33] and The HlyA is a poreforming toxin, which belongs to the family of RTX (repeats in toxin) toxins that are widespread among the Gramnegative pathogens [34]. In 2015, Grosu et al., also revealed in a high percent the expression of fimH virulence factor in *E.coli* strains isolated from urinary tract infections from the ambulatory sector of Central Laboratory Regina Maria Hospital in Bucharest, Romania from January to December 2014 [35-37].

In \hat{S} . aureus isolates the molecular analysis through PCR arrays showed that 40% of the isolates revealed the SCCmec cassette of type II, followed by type V and IIIA (30%) and type IV (2B) (20%). Regarding the virulence genes, the molecular analysis using PCR methods showed that 40% of the analyzed strains expressed both the clumping factor (clf) A and B genes and 50% of the isolates presented the collagen adhesin (cna) gene. The finding that, among the investigated *S. aureus* strains, the majority present adhesions, demonstrates that these strains have the potential to initiate an infectious process.

Conclusions

Incorrect practices in biocides use, regarding contact time and concentrations or instruments and surfaces insufficient cleaning before disinfection can decrease their effect and favor the persistence of resistant and virulent microbial strains in the hospital environment. Moreover, microorganisms can be incorporated in different organic substrata, like pus, blood, serum, food waste or may grow in biofilms, that may also impair the effect of disinfectants. Therefore, monitoring of biocides efficacy and resistance should be implemented as a key component of the hospital infections control strategies.

Acknowledgement: The financial support of the research project PN-II-RU-TE-2014-4-2037 is gratefully acknowledged

References

1.LIMBAN, C., MISSIR, A.V., CHIRITA, I.C., NEAGU, A.F., DRAGHICI, C., CHIFIRIUC, M.C., Rev. Chim. (Bucharest), **62**, no. 2, 2011, p.168 2.BADICEANU, C.D., DRAGHICI, C., MISSIR, AV., CHIFIRIUC, M.C., STECOZA, C.E., Rev. Chim. (Bucharest), **65**, no. 2, 2014, p.160 3.CIUSA, ML., FURI, L., KNIGHT, D., et al., Int. J. Antimicrob. Agents., 40, nr.3, 2012, p.210 4.BRIDIER, A., BRIADET, R., THOMAS, V., DUBOIS-BRISSONNET F., Biofouling, 27, nr. 9, 2011, p.1017 5.LeCHEVALLIER, MW., CAWTHON, CD., LEE, RG., Appl. Environ. Microbiol., 54, nr. 3, 1988, p.649 6.SALEH, S., HADDADIN, RNS., BAILLIE, S., COLLIER, PJ., Lett. Appl. Microbiol., 52, nr. 2, 2011, p.87

7.FAN, F., YAN, K., WALLIS, NG., REED, S., MOORE, TD., et al., Antimicrob. Agents. Chemother., 46, nr. 11, 2002, p.3343

8.SKOVGAARD, S., NIELSEN, LN., LARSEN, MH., SKOV, RL., INGMER, H., VESTH, H., PLoS ONE, 8, NR. 4, 2013, p.e62197

9.LITTLEJOHN, TG., DIBERARDINO, D., MESSEROTTI, LJ., SPIERS, SJ., SKURRAY RA., Gene, 101, nr. 1, 1990, p.59

10.ALAM, MM., KOBAYASHI, N., UEHARA, N., WATANABE, M., Microb. Drug. Resist. 9, nr. 2, 2003, p.109

11. WEIGEL, LM., CLEWELL, DB., GILL, SR., CLARK, NC., MCDOUGLA LK., et al., Science, 302, nr. 5650, 2003, p.1569

12. ANGHEL, A., CHIFIRIUC, MC., MITACHE, M., MARUTESCU, L.,

ANGHEL, AG., POPA, M., PELINESCU, D., BLEOTU, C., LAZAR, V., Farmacia, 60, nr. 1, 2012, p.21

13. MATEESCU, L., MITACHE, MM., CHIFIRIUC, MC., VASSU, T., Rom. Biotech. Lett., 19, nr. 3, 2014, p.9409

14. MIHEIRICO, C., OLIVEIRA, DC., DE LENCASTRE, H., J. Antimicrob. Chemother., 51, nr. 9, 2007, p.3374

15. ZHANG, K., MCCLURE, JA., ELSAYED, S., LOUIE, T., CONLY, J., J. Clin. Microbiol. 43, nr. 10, 2005, p.5026

16. COTAR, AI., CHIFIRIUC, MC., DINU, S., BUCUR, M., IORDACHE,

C., BANU, O., DRACEA, O., LARION, C., LAZAR, V., Int. J. Mol. Sci., 11, nr. 12, 2010, p.5273

17. POIREL, L., WALSH, TR., CUVILLIER, V., NORDMANN, P., Diagn. Microbiol. Infect. Dis., 70, nr. 1, 2011, p.119

18. JIANG, X., NI, Y., JIANG, Y., YUAN, F., HAN, L., LI, M., et al. J. Clin. Microbiol. 43, nr. 2, 2005, p.826

19. EFREKAR, RF., HOSSEINI-MAZINANI, SM., GHANDILI, S., HAMRAZ, M., ZAMANI, S., Iran. J. Biotech., 3, nr. 1, 2005, p.48

20. NAAS, T., PHILIPPON, L., POIREL, L., RONCO, E., NORDMANN,

P., Antimicrob. Agent. Chemother. 43, 1999, p.1281

21. ISRAIL, A., CHIFIRIUC, MC., PALADE, G., COTAR, A., Clinical and bacteriological aspects of bacterial infections associated to abdominal surgical emergencies. Ars Docenti Publ. House, 2013

22. CATTOIR, V., POIREL, L., ROTIMI, V., SOUSSY, CJ., NORDMANN, P., J. Antimicrob. Chemother., 60, nr. 2, 2007, p.394

23. AGNELLO, M., WONG-BERINGER, A., PLoS One., 7, nr. 8, 2012, p.e42973

24. YAMAMOTO, S., TERAI, A., YURI, K., KURAZONO, H., TAKEDA, Y., YOSHIDA, O., FEMS Immunol. Med. Microbiol. 12, nr. 2, 1995, p.85 25. LE BOUGUENEC, C., ARCHAMBAUD, M., LABIGNE, A., J. Clin.

Microbiol., 30, nr. 5, 1992, p.1189 26. JOHNSON, JR., KUSKOWSKI, MA., GAJEWSKI, A., SOTOS, S., HORCAJADA, JP, JIMENEZ DE ANTA, MT., VILA, J., J. Infect. Dis. 191, nr. 1, 2005, p.46

27. BLANCO, M., BLANCO, JE., ALONSO, MP. MORA, A., BALSALOBRE, C., MUNOA, F., JUAREZ, A., BLANCO, J., Res. Microbiol., 148, nr. 9, 1997, p.745

28. BALOTESCU, MC., PhD thesis- Opportunistic infections in HIVinfected patients. University of Bucharest, 2005.

29. PORUMBEL, I., GHEORGHE, I., POPA, M., BANU, O., BOLOCAN, A., LAZAR, V., CHIFIRIUC, MC., Biointerface Res. Appl. Chem, 6, nr. 2, 2016, p.1176

30. GOEHRING, UM., SCHMIDT, G., PEDERSON, KJ., AKTORIES, K., BARBIERI, JT., J. Biol. Chem., 274, nr. 51, 1999, p.36369

31. SCHULERT, GS., FELTMAN, H., RABIN, SD., MARTIN, CG., BATTLE,

SE., RELLO, J., HAUSER, AR., J. Infect. Dis. 188, nr. 11, 2003, p.1695 32. BIEN, J., SOKOLOVA, O., BOZKO, P., Inter. J. Neph. Article ID

681473, 2012 22 EPEPEPACHER P. IIICO E. BUAKDI S. Infort Immun 57, pr 2

33. EBERSPACHER, B., HUGO, F., BHAKDI, S., Infect. Immun., 57, nr. 3, 1989, p.983

34. MULVEY, MA., Cell. Microbiol., 4, nr. 5, 2002, p.257

35. GROSU, M., CHELARIU, M., GHEORGHE, I., CURUTIU, C., POPA,

M., DELCAR, C., PORUMBEL, I., GRIGORE, R., BERTESTEANU, S., LAZAR, V., VASSU DIMOV, T., Rom. Biotech. Lett., Accepted for publication, 22, nr. x, 2017

36. MITACHE, M., LAZAR, V., BLEOTU, C., CERNAT, R., CHIFIRIUC, MC., Rom. Arch. Microbiol. Immunol. 68, nr. 3, 2009, p.28

37. MITACHE, M., CHIFIRIUC, MC., BADEA, A., GEANA, OL., BUCUR,

M., OLAR, R., BADEA, M., PANUS, E., ROSOIU, N., IONESCU, P., SESAN,

T., LAZAR, V., Rom. Arch. Microbiol. Immunol., 67, nr. 1-2, 2008, p.43

Manuscript received: 29.03.2017